Radiomics: the process and the challenges.

نویسندگان

  • Virendra Kumar
  • Yuhua Gu
  • Satrajit Basu
  • Anders Berglund
  • Steven A Eschrich
  • Matthew B Schabath
  • Kenneth Forster
  • Hugo J W L Aerts
  • Andre Dekker
  • David Fenstermacher
  • Dmitry B Goldgof
  • Lawrence O Hall
  • Philippe Lambin
  • Yoganand Balagurunathan
  • Robert A Gatenby
  • Robert J Gillies
چکیده

"Radiomics" refers to the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with computed tomography, positron emission tomography or magnetic resonance imaging. Importantly, these data are designed to be extracted from standard-of-care images, leading to a very large potential subject pool. Radiomics data are in a mineable form that can be used to build descriptive and predictive models relating image features to phenotypes or gene-protein signatures. The core hypothesis of radiomics is that these models, which can include biological or medical data, can provide valuable diagnostic, prognostic or predictive information. The radiomics enterprise can be divided into distinct processes, each with its own challenges that need to be overcome: (a) image acquisition and reconstruction, (b) image segmentation and rendering, (c) feature extraction and feature qualification and (d) databases and data sharing for eventual (e) ad hoc informatics analyses. Each of these individual processes poses unique challenges. For example, optimum protocols for image acquisition and reconstruction have to be identified and harmonized. Also, segmentations have to be robust and involve minimal operator input. Features have to be generated that robustly reflect the complexity of the individual volumes, but cannot be overly complex or redundant. Furthermore, informatics databases that allow incorporation of image features and image annotations, along with medical and genetic data, have to be generated. Finally, the statistical approaches to analyze these data have to be optimized, as radiomics is not a mature field of study. Each of these processes will be discussed in turn, as well as some of their unique challenges and proposed approaches to solve them. The focus of this article will be on images of non-small-cell lung cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiomics: Current Challenges in Clinical Validation

Radiomics can be defined as the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with various modalities [1]. Radiomics methods can be applied across various cancers to identify tumor phenotype characteristics in the images that correlate with their likelihood of survival, as well as their association with the u...

متن کامل

Development and clinical application of radiomics in lung cancer

Since the discovery of X-rays at the end of the 19th century, medical imageology has progressed for 100 years, and medical imaging has become an important auxiliary tool for clinical diagnosis. With the launch of the human genome project (HGP) and the development of various high-throughput detection techniques, disease exploration in the post-genome era has extended beyond investigations of str...

متن کامل

Radiomics: Images Are More than Pictures, They Are Data

In the past decade, the field of medical image analysis has grown exponentially, with an increased number of pattern recognition tools and an increase in data set sizes. These advances have facilitated the development of processes for high-throughput extraction of quantitative features that result in the conversion of images into mineable data and the subsequent analysis of these data for decis...

متن کامل

Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation

PURPOSE Recent advances in medical imaging technologies provide opportunities to quantify the tumor phenotype throughout the course of treatment non-invasively. The emerging field of Radiomics addresses this by converting medical images into minable data by applying a large number of quantitative imaging algorithms. Accurate tumor segmentation is one of the main challenges of Radiomics. It has ...

متن کامل

Dissimilarity-based representation for radiomics applications

Radiomics is a term which refers to the analysis of the large amount of quantitative tumor features extracted from medical images to find useful predictive, diagnostic or prognostic information. Many recent studies have proved that radiomics can offer a lot of useful information that physicians cannot extract from the medical images and can be associated with other information like gene or prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2012